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Rotating fluid-filled containers are systems which admit inertial oscillations, which at 
appropriate frequencies can be represented as inertia wave modes. When forced by 
a time-dependent perturbation, systems of contained inertia waves have been shown, 
in a number of experimental studies, to exhibit complex and varied breakdown 
phenomena. It is particularly hard to determine a forcing amplitude below which 
breakdowns do not occur but at which linear wave behaviour is still measurable. 
In this paper, experiments are presented where modes of higher order than the 
fundamental are forced. These modes exhibit more complex departures from linear 
inviscid behaviour than the fundamental mode. However, the experiments on higher- 
order modes show that instabilities begin at nodal planes. It is shown that even a 
weakly nonlinear contained inertia-wave system is one in which unexpectedly efficient 
interactions with higher-order modes can occur, leading to ubiquitous breakdowns. 
An experiment with the fundamental mode illustrates the system’s preference for 
complex transitions to chaos. 

1. Introduction 
1.1. The nature of contained inertia waves 

There has been a long but sporadic history of investigations into contained rotating 
fluids. These are systems which admit wave motion, owing to the action of the Coriolis 
force as a ‘restoring force’. The waves are usually called inertia waves or sometimes 
inertia-Coriolis waves. They are found in many contexts, including the oceans and 
atmosphere. However, in a contained rotating-fluid system, there are no free surfaces 
and the fluid is completely enclosed in a container. Complex phenomena can result 
from this imposition of boundary conditions. Contained inertia waves occur in the 
Earth’s fluid outer core (Aldridge & Lumb 1987), in the fuel tanks of spinning 
spacecraft (Manasseh 1993) and inside some military projectiles. The mathematical 
problem for inertial oscillations was first formulated by Poincari (1910), although a 
solution particular to cylindrical boundary conditions was found by Kelvin ( 1880). 

Consider first the linear theory. The form of three-dimensional wave equation ap- 
propriate to a rotating fluid becomes an ill-posed problem when coupled with the 
boundary conditions under consideration here. Once an oscillatory time dependence 
has been specified, the problem comprises a hyperbolic partial differential equation, 
with boundary conditions normally associated with elliptic partial differential equa- 
tions. Formally, theorems demonstrating the existence and uniqueness of solutions 
cannot be found for such a system. The possible absence of any solution (a wave 
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mode satisfying the boundary conditions) raises the possibility of unsteady or disor- 
ganized behaviour. The lack of uniqueness is manifested in an eigenvalue problem 
with an infinity of solutions. If a solution happens to be found, it will be one of a 
spectrum of eigenmodes. The solutions that have been found so far have been for 
quite simple geometries, like cylinders and spheroids. In certain geometries, like a 
cone spinning about its axis, no modal solution may be possible. Experiments on 
a cone by Beardsley (1970) and numerical studies by Henderson & Aldridge (1992) 
supported this prediction. Where a modal structure cannot be theoretically found, 
both physical and numerical experiments show only small-scale disorder. 

Experimental investigations where inertia waves were forced began with Fultz 
(1959), who investigated axisymmetric oscillations in a cylinder. Studies into a pre- 
cessing cylinder (Johnson 1967) and spheroid (Malkus 1968) followed. Further ex- 
periments in cylindrical geometries (McEwan 1970; Stergiopoulos & Aldridge 1982; 
Manasseh 1992; 1994; Kobine 1995) confirmed the presence of inertia wave modes 
for this geometry, while raising doubts about their stability. 

1.2. Breakdown of contained inertia waves 
Ordered wave-modal behaviour, even in cylinders and spheroids, seems to be highly 
susceptible to flow instabilities and breakdown. Johnson ( 1967) precessed a right 
circular cylindrical tank and forced the system at the first mode resonance. He noted 
a “very turbulent-looking flow pattern”. Malkus (1968) precessed a spheroid through 
an angle of 30” and reported violent disorder beyond a certain precession frequency. 
Instabilities on shear layers along characteristics were originally suspected to be the 
cause of the turbulence reported by Malkus. Today, elliptical-flow instabilities are 
thought to be the cause. Recent work on elliptical flows will be summarized shortly. 

McEwan (1970), Gans (1984), Whiting (1981) and Stergiopoulos & Aldridge (1982) 
all reported instabilities and turbulence in similar experiments. McEwan (1970) used 
the term resonant collapse to describe breakdowns he observed. 

Manasseh (1992, referred to herein as M92) catalogued the various breakdown 
phenomena in a cylinder and concluded that there were a variety of different processes 
at work. The breakdown phenomena ranged from ‘violent-collapses’ where fine-scale 
turbulence was generated, to more subtle intermittent breakdowns, where there were 
several transitions to chaos then back to order. These apparently involved interactions 
of the mode nearest resonance with a higher-order mode. Forcing amplitudes below 
which the nonlinear behaviour was not observed were often so small that hardly any 
response, linear or otherwise, could be detected. In Manasseh (1994, referred to herein 
as M94) one type of breakdown (Type B) was studied in detail, concentrating on the 
initial stages of the process. (The Type B breakdown occurs for weak forcing near 
the fundamental or ( l , l , l)  mode, and leads to disorder but not fine-scale turbulence.) 
Irreversible distortions away from the predictions of linear theory took place within 
a few revolutions of the commencement of forcing. M94 used an electrolytic dyeline 
technique that gave information on the velocities in the flow, which M92 could not do. 

The theory of elliptical-flow instabilities (Gledzer, Dolzhanskii & Obukhov 1989; 
Malkus 1989; Waleffe 1990; Malkus & Waleffe 1991; Gledzer & Ponomarev 1992; 
Kerswell 1993) has received recent attention. It was suggested by Malkus & Waleffe 
(1991) that the breakdown of the inertia-wave mode that is created by the elliptical- 
flow instability is an “ubiquitous source of turbulence which by-passes lesser chaotic 
phases”. The elliptical-flow studies have looked at instabilities of an elliptical flow 
that is a basic solution for the flow in certain geometries. In a cylinder with a circular 
cross-section, as noted by Kerswell (1993)’ the absence of an equivalent basic solution 
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precludes a similar treatment. In a spheriod, the basic state could permit an interaction 
between inertia wave modes whose azimuthal wavenumbers and frequencies differ by 
1. This would permit an instability to be stationary in the forcing frame of reference, 
as observed in M92 and M94. In a cylinder, the frequencies will never exactly add up, 
as detailed in 94. Nevertheless, there are a number of ways in which elliptical-flow 
instabilities may be relevant to all inertia-wave breakdown phenomena. One of these 
is an interaction with an elliptical mean circulation, and is discussed in 96. 

1.3. Mean $’ow efSects and nonlinear interactions 
A number of studies have looked at the azimuthal mean circulation which can arise 
in a contained inertia-wave system. Here azimuthal mean circulations are geostrophic 
flows, where the velocity field does not vary in the direction parallel to the rotation 
axis. Circular, elliptical, or other streamline patterns are possible. 

On the basis of formal asymptotic theory (Thompson 1970), a small azimuthal 
mean circulation should be expected. Such a circulation was too small to be detected 
(M94) at early times in the experiment when small-amplitude approximations have 
some success in predicting the behaviour. Moreover, Thompson’s ( 1970) circulation 
is a second-order effect, driven by the first-order inertial oscillations. Hence any 
influence this circulation has on inertia wave modes is at third-order level. However, 
experimental results suggest a more significant circulation, at later stages in the 
behaviour, or when violent collapses occur. 

From experiments, Fultz (1959), Malkus (1968), McEwan (1970), Aldridge (1988, 
private communication) and Kobine (1995) all reported a significant azimuthal mean 
circulation. When an azimuthal mean circulation becomes established, it will ‘Doppler- 
shift’ the excitation frequency by changing the effective basic spin rate. This could 
provide a mechanism where an off-resonant excitation is frequency-shifted to a 
resonant state, then away again, in a ‘tuning-detuning’ process (Gunn & Aldridge 
1990). Some evidence for this process is the intermittent chaos reported by McEwan 
(1970), Scott (1975) and M92. 

Kobine (1995) measured a mean circulation using laser-Doppler velocimetry in the 
same system as M92 and M94. His work included a study of the ( l , l , l )  inertia wave 
mode near resonance. He showed that a breakdown occurs at approximately the same 
time as saturation of the oscillation amplitude and mean circulation. No experiments 
to date have identified the azimuthal structure of a mean circulation. Thus it could 
be circular, elliptical, or more complex in form. The relevance of a mean flow, in the 
context of elliptical-flow instabilities, is discussed in 96. However, mean flows are not 
directly investigated in the present paper. 

The first aim of the experiments reported in this paper was to study the behaviour 
when modes are forced that have higher orders than the ( l , l , l )  mode studied in 
M94. It was of interest to see if similar departures from linear behaviour occur when 
higher-order modes are forced. The electrolytic dyeline technique of M94 had not 
been applied to modes other than the (l , l , l)  mode. 

As an aside in a paper on waves in a stratified fluid, McEwan (1971) speculated 
that the resonant collapse of inertia wave modes was caused by nonlinear interactions 
of triads of waves. Here he invoked the analogy between stratified and rotating flows. 
The degeneration of internal waves in a stratified fluid was successfully modelled by a 
triad mechanism (McEwan, Mander & Smith 1972; McEwan 1983). Aldridge & Ster- 
giopoulos (1991) inferred that mode amplitudes in a cylinder were slowly oscillating 
with time, owing to nonlinear interactions. In M92 image-processing measurements 
gave some evidence of mode interactions during the Type B breakdown. In addi- 
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FIGURE 1. Schematic drawing of the apparatus. 

tion, in observations of Type C, F and G breakdowns (M92), it appeared as though 
one or two secondary modes were interacting with the primary mode - the forced 
mode nearest resonance. Thus, McEwan’s (197 1) speculation on triad interactions in 
a cylinder should be investigated. 

Section 2 is an overview of the linear theory for the system. Section 3 presents 
experiments indicating that departures from linear inviscid behaviour occur in more 
complex ways for higher-order modes. Section 4 outlines features of the weakly 
nonlinear theory and $5 describes an experiment showing that the fundamental-mode 
breakdown is not consistent with one of the simplest triad interaction models. Finally, 
$6 summarizes ideas on the cause or causes of the phenomena. 

2. Formulation 
Refer to figure 1 for some definitions of parameters. The formulation leading to a 

description of inertia wave modes in a fluid-filled cylinder has already been detailed 
(Manasseh 1991; M94), where full definitions of the terms can also be found. Here, 
too, the cylinder spinning about the k-axis is subjected to a forced precession or 
coning motion about the k-axis. The k-axis is fixed in the cylinder while the k-axis 
is fixed in inertial space. Rotation rates are sufficient to render the Ekman number 
E representing viscous effects small, O( lo-’). The incompressible, inviscid and fully 
nonlinear momentum equation relative to axes fixed in the container is 

8U 
- + (u * V)u  + 2k x u + 2(02/01)& x u + (02/01)(k x k )  x Y 
at 
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where r is the location of a fluid element within the container, u is the fluid velocity and 
P is pressure. In subsequent analyses a reduced pressure p is ysed, which incorporates 
the steady components of the centrifugal term. Note that K varies with time. The 
linearized form of (2.1) is obtained by treating the nutation angle Q between k and k 
as small and formally expanding u and p in powers of 0. This gives to leading order 

where co = 2( 1 + co~/o~). The incompressibility condition is given by 

v * u = o .  (2.3) 

u.Ei = 0 ,  (2.4) 

The boundary condition is 

where ii is the unit normal vector to the container surface. This allows a free-slip 
condition at the container wall consistent with the assumption of an inviscid flow. 
Cylindrical polar coordinates ( r , 4 , z )  fixed in the container with their origin at the 
cylinder centroid are used. Appropriate simplifications of the governing equations, 
including the presumption of wave-modal behaviour, lead to Poincare's equation, 

in the pressure amplitude Qn of the nth mode; (2.5) is a hyperbolic p.d.e. for 101 > 1, 
when the characteristic surfaces are cones with half-angle tan-'(co2 - l)-1/2. The 
relevant solution is 

Qn = Jm(2Anr) cos(2(co2 - 1)-1/2An[z + h /2] )  elmb, 

where J,,, is the Bessel function of the first kind, order m, and h is the cylinder 
height/radius ratio. The modes arising from precessional forcing have azimuthal 
wavenumber m = 1 (since the forcing term on the right-hand side of (2.2) goes as 
cos(4 + t ) ) .  The radial wavenumbers are given by the roots of 

+ mwJ,(A) = 0, a J d 4  A- 
& 

in order to satisfy the radial boundary condition. In order to satisfy the axial boundary 
condition with integer axial wavenumber k, 

2 
l k l m h  w2 = 1 + (n) ' 

where Aklm is the Ith root of (2.7). Hence the argument of the Bessel functions 1 
is non-integer but 1 is the index that counts the number of radial cycles. Resonant 
excitation frequencies are thus values of w satisfying (2.7) and (2.8). Some of the 
lower-order w, are given in table 1 for the h used here, including some modes that 
cannot be precessionally forced. 

3. Experiments with higher-order modes 
Here the early-time behaviour of the system, for modes of higher order than the 

fundamental or ( l , l , l )  mode, is examined. The (l , l , l)  mode rapidly and irreversibly 
departed from linear predictions (M94), in both the time dependence and the flow 
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k l  
1 1  
1 2  
2 1  
2 2  
3 1  
3 2  
1 1  
1 2  
2 1  
2 2  
3 1  
3 2  

m W k i m  l k l m  k 1 m w k i m  l k i m  k 1 m W k i m  

0 -3.403 3.832 1 1 1 -4.056 4.631 1 1 2 -4.893 
0 -6.038 7.016 1 2 1 -6.733 7.844 1 2 2 -7.649 
0 -1.909 7.016 2 1 1 -2.305 4.893 2 1 2 -2.712 
0 -3.141 1.017 2 2 1 -3.590 8.124 2 2 2 -4.050 
0 -1.475 3.832 3 1 1 -1.732 4.996 3 1 2 -1.994 
0 -2.223 7.016 3 2 1 -2.537 8.239 3 2 2 -2.846 
0 3.403 3.832 1 1 1 2.643 2.882 1 1 2 4.014 
0 6.038 7.016 1 2 1 5.278 6.105 1 2 2 6.755 
0 1.909 3.832 2 1 1 1.484 2.584 2 1 2 2.056 
0 3.141 7.016 2 2 1 2.654 5.792 2 2 2 3.346 
0 1.475 3.832 3 1 1 1.224 2.493 3 1 2 1.524 
0 2.223 7.016 3 2 1 1.891 5.674 3 2 2 2.304 

TABLE 1. Resonant excitation frequencies W k l m  and radial wavenumbers 
&,, for a cylinder, h = 813 

A i m  

5.642 
8.934 
5.939 
9.246 
6.098 
9.419 
4.580 
7.870 
4.234 
7.523 
4.063 
7.336 

structure. The time dependence lost its oscillatory nature. The flow structure developed 
a 'kink' at the container centroid, representing a flow with about 1/5 of the linear 
response magnitude. The (3,lJ) and (5,2,1) modes were selected for this study because 
they are the most readily forced with the experimental equipment, after the (l , l , l)  
mode. 

Figure 1 illustrates the apparatus. The equipment, experimental procedure and 
electrolytic dyeline flow-visualization method are as detailed in M94; here is a brief 
summary. The system is spun up to solid-body rotation with the axes of spin and 
precession collinear (8 = 0). However, the rotation frequencies of the container (ol) 
and turntable ( 0 2 )  are set at a combination that would excite the desired mode if 8 
were non-zero. At time t = 0, the spin axis is tilted to smoothly increase 8 to 1". This 
begins forcing of the system. The descriptions below are summaries of observations 
of several identical runs, which show both qualitative and quantitative repeatability. 
Owing to the nature of the dyeline technique, observations are possible for a few 
tens of revolutions before the dyeline disspates. For consistency with M92 and M94, 
the non-dimensional times quoted here are scaled by o1, which was 10.47 rad s-l 

(1.67 Hz). Hence times are in revolutions of the container relative to the turntable 
and camera shown in figure 1. 

3.1. Experiments in the (3,1,1)-mode range 
Here the behaviour for 1.22 < o < 1.28 for a nutation angle of 8 = 1" was studied. 
From M92, forms of breakdown classified as Type F and F1 collapses (and Type E, at 
o = 1.28) are to be expected in this frequency range. These breakdowns result in weak 
turbulence (with scales of about 1/4 of the container diameter). They can be followed 
by intermittent chaos - a quasi-periodic re-ordering of the flow and subsequent 
recurring breakdowns. A nutation angle of 1" was used because it was anticipated 
from M94 that stronger forcing would result in inadequate dyeline formation. 

Experiments were run at o = 1.22,1.24,1.26 and 1.28. The theoretical value of o 
at the (3,1,1)-mode resonance is 1.2237. From M92, in which a different visualization 
technique was used, the breakdowns at these parameter values are expected to occur 
over timescales of 50 to 100 revolutions. By this time the dyelines would have virtually 
disappeared. There were five runs at each w. In the following descriptions, the term 
nodal planes refers to planes of constant z where the radial and azimuthal velocities 
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FIGURE 2. (a)  Dyeline pattern for w = 1.28, Q = 1". The time is 3.6 f 0.3 non-dimensionally. 
The image is taken from the videotape record at 2.19 s. The timing error arises from a 0.2 s 
uncertainty in the time of commencement of forcing. The image was enhanced using standard 
histogram-equalization and intensity-mapping techniques; variations in the background are caused 
by noise at intensity levels unrelated to the dyeline image. ( b )  As ( a )  but for w = 1.22. The time is 
3.5 & 0.3 non-dimensionally or 2.18 s on the videotape record. 

are zero and the axial velocity is an extremal. Antinodal planes are planes where the 
radial and azimuthal velocities are extremal and the axial velocity is zero. 

Note that the flange of the tank which appears at the top of the image in figure 2 
obscures the top 1/12 of the image of the fluid interior. This gives a false impression 
of the position of the tank top plane relative to the centre. 

Figure 2(a) shows the forced response for 6' = 1" and w = 1.28 (about 5% away 
from the (3,1,1)-mode resonance) at 3.5 f 0.3 revolutions after the commencement of 
forcing. A sinusoidal dyeline displacement with 1; axial wavelengths can be seen, as 
expected from linear inviscid theory for the (3,1,1) mode. The amplitude here is too 
small for reliable estimation, but it will be estimated shortly for w = 1.22. The flow 
for w = 1.28 is not steady at the stage of figure 2(a), and develops as described below 
for o = 1.22. 

Figure 2(b) shows the forced response for 6' = 1" and o = 1.22, which is much 
closer to the theoretical resonance at w = 1.2237, at 3.5 f 0.3 revolutions after the 
commencement of forcing. There are outflows of dye at the central (3,1,1)-mode 
nodal plane. The outflows spread in a plane containing the z-axis and in a direction 
at approximately 50" to the z-axis. For brevity, this dye structure will be called a 
bow-tie. Outflows also occur at the upper and lower (3,1,1)-mode nodal planes, where, 
however, outflows are more prominent on one side of the wire than on the other. It 
is not clear if this is due to the wire being diagonal or if it represents an asymmetry 
in the behaviour. All the outflows appear to be coplanar and in a plane containing 
the z-axis. As with the kink in the (l,l,l)-mode dyeline (M94) the outflow pattern 
rotates with the container. This is in contrast to the linear forced response which 
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is steady in the turntable (forcing) frame of reference, apart from modulations due 
to the transients, 'Stokes drift' and other kinematic factors. These are comparatively 
small (M94). 

The bow-tie pattern in figure 2(b) could already be discerned before t = 0 owing 
to the 'out-of-alignment forcing'. As detailed in Manasseh (1991), even very small 
misalignments in the apparatus, prior to the commencement of forcing, can lead to 
some excitation of a mode if the system is set near a resonance. At w = 1.22 this 
effect is particularly noticeable as the frequency is only about 0.3% away from the 
(3,1,1) mode resonance. Once intentional forcing commences at w = 1.22 or w = 1.28, 
outflows appear to generate the same patterns, overlaying those already present due 
to the out-of-alignment forcing. In figure 2(b) there has already been some smudging 
of the bow-tie pattern and the outflows at the upper and lower (3,1,1) mode nodal 
planes. Noticeable at the tip of the left wing of the bow-tie is a curvature in the 
dyeline path suggestive of a recirculation zone in that region of the container. This 
curvature is a consistent feature of all the runs for w = 1.22. Its presence on one wing 
of the bow-tie may be due to the fact that the wire does not pass exactly through the 
tank centre, rather than to any asymmetry in the behaviour. 

The amplitude of what may be presumed to be the (3,1,1) mode, can be estimated 
from the images, as described in M94. At w = 1.22 this estimation gives a velocity 
amplitude of about 45 +_ 10 mm s-l. The scale expected for linear behaviour is about 
16 mm s-l (M94). The outflow producing the bow-tie corresponds to a flow of about 
1 mm SKI. It was not possible to say if this outflow was arrested, as did the 'kink flow' 
observed in the (l , l , l)  mode range in M94. The dyeline at o = 1.22 had dissipated 
before any halt to the outflow could be discerned. There will be a further discussion 
in $6. 

In all cases, the outflows occurred at the three nodal planes of the (3,1,1) mode. 

3.2. Experiments in the (5,2,1)-mode range 
A series of experiments was conducted to gather data spanning the frequency spectrum 
near the (5,2,1) mode resonance. Theoretical resonance of the (5,2,1) mode occurs 
when w = 1.378. Experiments were run at co = 1.34,1.36,1.38 and 1.40, a set of values 
about 10% away from the (3,1,1) mode resonance. There were five runs at each o. 
However, for the first run in each set, forcing was not initiated so that the development 
due to the out-of-alignment of spin and precession axes could be noted. As with the 
(l,l,l)-mode experiments (M94) and the (3,1,1)-mode experiments described above, 
the nutation angle was set at 8 = 1". 

The behaviour at o = 1.34 when forcing was not initiated does not show the 
clear outflows due to the out-of-alignment forcing that were observed closer to 
the (3,1,1)-mode resonance. Rather, two breaks in the dyeline appear at heights of 
approximately z = -h/10 and z = h/10. One end of each broken portion moves 
radially outwards. The broken portions rotate with the tank. With this weak out-of- 
alignment forcing, they correspond to dye leaving the wire at a rate of about 0.13 mm 
s-'. The broken portions are coplanar and make an angle of roughly 30" with the 
vertical. Similar behaviour was noted at w = 1.36, with detachments also occurring at 
the z = 0 plane. The characteristic angle of the governing equation (2.5) at w = 1.34 
is 48.3", so there is no coincidence between the angle of the detached portion and the 
characteristics. 

The runs at w = 1.34 were the closest of the runs in the (5,2,1) mode range to the 
(3,Ll) resonant frequency at w = 1.2237. The behaviour after forcing commences is 
complicated. Initially the dyeline distorts in the pattern expected for the (3,1,1) mode, 
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a displacement relative to the wire that is steady in the turntable frame. By four 
revolutions, however, complicated developments are occurring at the central nodal 
plane and at planes approximately at z = -h/3 and z = h/3. These three planes are 
the nodal planes of the (3,1,1) mode. At the z = +h/3 planes, a portion of the dyeline 
of about 0.13h in length detaches itself from the wire. At the centre, a localized kink 
appears with a single wavelength in about the same length of 0.13h. As the spatial 
extent of the kink grows, it becomes obvious that it is rotating with the tank. 

By 10 revolutions, prominent radial outflows have developed at the central nodal 
plane and at z = +h/3. The outflows are roughly coplanar and all rotate with the tank. 
The central outflow appears like the bow-tie pattern noted above for the (3,1,1) mode. 
Each outflow is consistent with a flow that tears away a portion of dye at a nodal 
plane and carries it radially outwards. The rest of the dyeline becomes convoluted 
and distorted. By 30 revolutions the only dye remaining is in the torn-away portions. 
These have ceased their radial motion and are revolving with the tank at a radius of 
about r/4. 

This behaviour, organized along the three nodal planes of a k = 3 mode, may be 
because at w = 1.34 the (3,1,1) mode could still contribute more to the flow than the 
(5,2,1) mode. This behaviour was also noted at w = 1.36. 

After forcing commences at o = 1.36, a central radial outflow appears. This 
develops like the outflow at the central nodal plane at w = 1.34. The two other 
outflows noted at o = 1.34 also develop, again approximately at the nodal planes of 
a k = 3 mode. The development up to about 4 revolutions is the same as at w = 1.34. 
A k = 3 mode pattern appears, and this is a displacement relative to the wire that is 
steady in the turntable frame. After about 4 revolutions, the 2; axial wavelengths one 
would expect from the (5,2,1) mode appear. However, this new wavy displacement 
of the dyeline from the wire is rotating with the tank. It cannot represent the linear 
forced response of the (5,2,1) mode since that would be stationary in the turntable 
frame of reference. The initial wavy displacements of the dyeline relative to the wire 
in the (1,1,l)-mode and (3,1,1)-mode ranges (M94 and $3.1 above, respectively) were 
stationary in the turntable frame. Hence, they were consistent with the linear forced 
time dependences of those modes. 

Figure 3(a) shows the situation at 6.5 revolutions. Recall that the flange at the top 
of the tank obscures the top 1/12 of the fluid volume, giving a false impression of 
the tank top plane relative to the centre. The central outflow is the most prominent, 
as it forms an S-shape in the vicinity of the tank centre. By about 10 revolutions, the 
state is as shown in figure 3(b). Radial outflows are not observed at any additional 
nodes corresponding to the (5,2,1) mode. Ultimately, the entire dyeline appears to 
break into several co-tangential filaments. 

At w = 1.38 the (5,2,1) mode is only 0.1% away from resonance, whereas the (3,lJ) 
mode is now 13% away from resonance. In the first run at w = 1.38, intentional 
forcing was not initiated, in order to study the behaviour under the out-of-alignment 
forcing. Under this very weak forcing, five points where dye has collected on the 
wire are apparent. The five collection points appear at the nodal planes of the (5,2,1) 
mode. The term ‘collection’ is used here as it appears as if the dye has been swept 
towards these points by a very weak flow. This is in contrast to the clear breaks which 
were observed at the two lower frequencies in the (5,2,1) range. The central collection 
is the most prominent, with radial outflows just above and below the z = 0 plane. 
The collection nearest the tank bottom appears much fainter than the other four, 
which may be due a combination of effects: dirt on the wire in this region; and the 
asymmetry in the electric field referred to in Manasseh (1991). 
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FIGURE 3. (a) Dyeline pattern for w = 1.36, 0 = 1". The time is 6.5k0.3 non-dimensionally or 3.90 s 
on the videotape record. Image enhancement as figure 2;  vertical stripes in the background are due 
to an unavoidable enhancement of the moulded-plastic light diffusers behind the tank. (b)  As ( a )  
but time is 10.0 0.3 non-dimensionally or 6.00 s on the videotape record. 

Initially, after forcing commences at co = 1.38, the behaviour is similar to that at 
w = 1.34 and o = 1.36. The initial appearance of a k = 3 mode pattern can be noted: 
a displacement relative to the wire that is steady in the turntable frame. The radial 
outflows at the central nodal plane grow. Other outflows are not initially in evidence. 
By 4 revolutions it appears as if the dyeline is being twisted as the central outflow 
rotates with the tank while the k = 3 mode pattern continues to be stationary in 
the turntable frame. A revolution later, there appear 2; axial wavelengths, which in 
this o = 1.38 case do appear stationary in the turntable frame. The instantaneous 
appearance of this structure is virtually the same as at w = 1.36, the significant 
difference being the time dependence. Breaks in the dyeline at the nodal planes of a 
k = 3 mode do not appear until about 5 revolutions; the subsequent development is 
very similar to that at w = 1.36. 

When w = 1.40 and intentional forcing was not initiated, two collections of dye on 
the wire are apparent, at approximately z = -h/3 and z = h/3. The second collection 
near the tank bottom is much weaker. After forcing commences at o = 1.40 the 
behaviour is similar to that at w = 1.38: there is a very prominent bow-tie outflow 
at the z = 0 plane and lesser outflows approximately at the z = -h/3 and z = h/3 
planes. At this frequency, by about 10 revolutions the dyeline clearly appears to be 
twisted-up for -h/3 < z < 0 and 0 < z < h/3. As at the other frequencies studied, the 
outflows at the nodal planes do not progress beyond about a quarter of the radius. 

There will be some discussion of the dyeline observations in this section in $6. 
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4. Approximate resonant triads 
In some experiments with contained inertia-wave systems there is evidence of wave 

interactions (Aldridge & Stergiopoulos 1991; M92 as detailed in $1). In this section 
a model applicable to some regions of the parameter space investigated in M92 and 
M94 is outlined. Here a weak nonlinear system is specificially defined as one which 
can be described by a combination of a small number (less than 10, say) of the 
eigenmodes described in $2, with amplitudes varying arbitrarily with time. The first 
aim is to illustrate the complexity of the possible nonlinear interactions for the present 
system. A weakly nonlinear model is most likely to apply to the ‘gentler’ Type B, C, 
F and G collapses (M92) and the early-time behaviour of M94. The second aim is to 
test this idea for one case; a suitable experiment will be presented in 95. 

To investigate interactions between the modes, it is assumed that the flow is 
composed of a sum of the normal eigenmodes, each satisfying the boundary conditions 
and multiplied by arbitrary complex amplitudes. In investigations of the nonlinear 
interaction of orthogonal eigenmodes, it is often the case that the spatial structure 
of the modes is made up of trigonometric functions. This is the case with surface or 
internal ocean waves, which have been extensively studied (for example, see Thorpe 
1966) or with waves in containers with rectangular boundaries (McEwan et al. 1972). 
In these cases it is possible to assume a ‘resonant triad’ condition +o, = f o b  f 6, 
and *& = &I- f &, where o is the frequency and k is the wavenumber vector, for 
three trigonometric modes a, b and c. Here the quadratic nonlinear terms combine 
two modes to force a third. The appropriate interaction equations can be inferred 
heuristically (Craik 1985) by equating those terms that satisfy the resonant triad 
condition. However, in the present case the Bessel functions which make up the 
spatial eigenfunctions do not obey the simple addition theorems that trigonometric 
functions do. Thus the wavenumbers in the radial direction need not sum to permit 
nonlinear interaction. Details of the required approach for a cylindrically contained 
inertia-wave system are in the Appendix. An interacting set is defined as a group of 
three modes whose axial and azimuthal wavenumbers sum appropriately. 

Adopting an essentially standard weakly nonlinear formulation (detailed in the 
Appendix), it is possible to demonstrate the propensity for unexpectedly efficient 
interactions with higher-order modes. The root-finding algorithms used to calculate 
the resonant frequencies such as those presented in table 1, were expanded to produce 
plots indicating how close a given interacting set is to being a resonant triad. 

The program works with a specified primary mode. It searches through the spectrum 
of secondary modes, with an algorithm that starts with low kb and mb and progressively 
increases these, finding the < 0 eigenmode with the lowest radial 
wavenumber for each (kb,  mb) combination. For each such combination, there are 
eight potential third modes that could form an interacting set with the first two, 
generated by addition and subtraction of kb,mb and 1 / o b  with k,,m, and l/oa. (It 
is l/o that must be used because of the way the non-dimensional frequency o was 
defined; explanations are in M92.) The program determines how close the resulting 
potential third mode is to a true root of the transcendental equation, i.e. a solution 
of (2.7) and (2.8). The quotient 

> 0 and the 

which indicates the closeness to matching the resonant triad condition, is plotted in 
a three-dimensional histogram. Figure 4 shows the result, where the primary mode 
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cob< 0 

FIGURE 4. The quotient A that indicates the closeness to matching the resonant triad condition. 
The primary mode is (l,l,l); secondary modes plotted are ones with the lowest radial wavenumber, 
lb = 1. The domain in k b  X mb space is -12 < k b  < 12 and -11 < mb < 11 with m = 0 allowed. 
Scales on the k b  and mb axes are the same. The algorithm advances such that (kb,mb) = (n ,  n - k b ) ,  

with n E {1,12} to avoid computing modes where both kb and mb are high. 

is the (l,l,l) mode with w = 2.643 and the horizontal plane is k b  x rnb space. The 
cob > 0 secondary modes have been placed in the first quadrant and the cob < 0 in 
the fourth. There are eight vertical spikes grouped around each ( k b , r n b )  point in the 
horizontal plane, representing the eight possible A values. If k b  = k,  half of the eight 
have k,  = 0, which cannot be an inertia wave mode. In this case, d is set to zero. 

The process is repeated for secondary modes with higher radial wavenumbers. 
Figure 5 shows the result of the search up to the tenth radial wavenumber with 
nmax = 12. The closest interacting set to a resonant triad is the set {(1,1,1,2.643), 
(3,7,1,-6.873), (2,1,0,1.909)} where the notation ( k ,  1, rn, a) is being used. Here l /d is 
only 0.00061; the corresponding spike is the tallest in figure 5 ( f ) .  It can be seen that 
the spikes are thinning out by the time lb  = 10 is reached. Nonetheless, there may be 
an important almost-resonant triad at a slightly higher radial wavenumber, or indeed 
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if)  

RGURE 5. The quotient A for primary mode (1,lJ); secondary modes are plotted for nine higher 
radial wavenumbers: (a) lb = 2 to (i) = 10. The heights of all the spikes in figures 4 and 5 (a-i) 
have been normalized by the same factor. 

up to radial wavenumbers of 0(E-1/4). Here, viscous damping from Stewartson layers 
(Greenspan 1968) would be important. 

The quotient A is only one criterion that should be used to estimate the importance 
of an interacting set. The size of the nonlinear projections, the cnorp defined in the 
Appendix, should also be used to weight the height of the spikes in figures 4 and 5. 
Nevertheless, it can be inferred from figure 5 that efficient interactions are likely to be 
both plentiful and unpredictable, owing to the transcendental nature of the dispersion 
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relation for these modes. An indication of the relative sizes of some cnap for a specific 
case will be given in $5. 

5. Experiment to test a hypothesis of modal interaction 
It is now of interest to test the proposition that some of the breakdown regimes 

may be explained by a weakly nonlinear model. The initial philosophy here will be 
to select interacting sets on the basis of their simplicity. The criteria for simplicity are 
the number of modes in an interacting set, and the magnitudes of their wavenumber 
vectors. It is suggested that the chance of a set being important in the flow is a 
function of its simplicity only. This selection is done without regard for the closeness 
of the interacting set to a resonant triad. Temporarily laying aside the indications 
from $4 that complex interactions are likely to be ubiquitous, we will try to use the 
simplest interactions to explain some experimental observations. 

One of the simplest interacting sets including the ( l , l , l )  mode as primary is 
{(1,1,1),(2,12,0)>. An interacting set involving a mode with m = 0 - an axisymmetric 
mode - is a special case. It is a 'triad' with two members; mathematically, the third 
member of the triad is formed by the complex conjugate of the primary mode. 

In M94 a kink was noted in the dyeline pattern and it was concluded that it 
represented an early failure of the linear inviscid theory. The magnitudes of flow 
corresponding to the kink were consistent with second-order nonlinear effects. This 
discrepancy between experiment and linear inviscid theory for the (1,lJ) mode may 
be consistent with the presence of the (2,1,0) mode as part of an interacting set 
{(1,1,1),(2,1~,0)}. This is because, as described below, the kink is consistent with a 
flow corresponding to the (2,1,0) mode. (The closest triad identifed in $4 also involved 
an interaction of the (2,1,0) and (1,lJ) modes, but with a (3,7,1) mode. There was no 
evidence of a k = 3 structure that might be due to a (3,7,1) mode.) 

Under weakly nonlinear theory, the flow in tank coordinates due to the (2,1,0) 
mode could be steady or slowly varying rather than oscillatory, because a linear time 
dependence is no longer being assumed. It was noted in M94 that the kink is consistent 
with an axisymmetric steady flow that is radially outwards at the (l,l,l)-mode nodal 
plane. Neither the inclusion of transients nor the inclusion as many as 13 additional 
higher-order linear forced modes appeared to explain the discrepancy. Viscous effects 
seemed unlikely. To explain the results of M94 a large radial outflow at the nodal 
plane and a small azimuthal component would be required. This would result from 
the presence of the (2,1,0) mode if its complex amplitude had an appropriate steady 
or slowly varying phase. Figure 6 is an illustration of how this mode could cause the 
kink. 

The test was done by the introduction of new flow-visualization wires. (These wires 
generate the electrolytic dyeline that is the basis of the flow-visualization method.) 
Four new wires were added, equispaced around the cylinder. They were parallel to the 
z-axis and at half the tank radius. At this radius there is a maximum in the azimuthal 
and radial velocities of the (2,1,0) mode. Calibration details are in Manasseh (1991). 

If the hypothesis of a simple modal interaction is correct, then on the four new wires 
the dyelines are predicted to deform radially. The maximum outwards deformation 
should be at the z = 0 plane and the maximum inwards deformation near the tank 
ends. This is illustrated in figure 6(b). 

Experiments were run at o = 2.46 and 2.60. The nutation angle was set at 8 = 1". 
The development of the dyeline from the central wire was as noted in M94. Initially, 
the dyelines on the new wires tilted in the same sense as the dyeline on the original 
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FIGURE 6.  Dyeline patterns created by the hypothetical presence of a (2,1,0) mode owing to a weakly 
nonlinear interaction with a forced (i,i,i) mode. Instantaneous streamlines due to a (2,1,0)-mode 
structure with appropriate slowly varying phase are shown as dashed lines. Faint straight lines are 
the wires generating the dye. (a) Pattern as described by M94. ( b )  Pattern that would be seen with 
additional visualization wires in the tank. 

central wire. Again, this is consistent with the linear inviscid theory. This state is 
shown in figure 7(a) ,  which is a video frame taken about 2.5 revolutions after the 
commencement of forcing. Here w = 2.46 and 8 = 1". After a few more revolutions, 
new developments occur. At approximately the z = 0 plane, kinks appear in the 
dyelines on the vertical wires at the same time as the kink on the central dyeline. This 
is illustrated in figure 7(b) ,  which is at about 5 revolutions. A small (about 1/6 of 
the tank height in length) patch of dye detaches from each vertical wire and moves 
radially slightly inwards. This motion is opposite in sense to the motion predicted by 
the hypothesis above. Furthermore it is much too small in scale to be accounted for 
by the flow due to a low-order mode like the (2,1,0) mode. In a few more revolutions, 
dye continues to separate from the vertical wires in the vicinity of the z = 0 plane. 
This dye forms blobs of about a fifth of the tank radius in size but never departs 
from the wires by more than this amount. Figure 7(c)  is at about 7 revolutions, when 
the kink in the central dyeline has developed to about a third of the radius in extent. 
(The maximum radial development is not in the same plane as the two vertical wires 
in this image.) It shows that there has been hardly any radial or azimuthal motion 
of dye from the vertical wires mounted at half the tank radius. Rather, there is a 
complex collection of dye about each vertical wire, at approximately the z = 0 plane. 

This collection of dye continues through the stage noted in M94, when the upper 
and lower arms of the central dyeline have wound into spiral forms. By this stage 
almost all the dye from the vertical wires has collected into blobs at approximately 
the z = 0 plane. 

Referring to figures 7(b )  and 7(c), note that the blobs on the wires at half the 
tank radius are not centred precisely at the z = 0 plane. Rather, the left-hand one 
is displaced slightly below this plane, and the right-hand one is slightly above it. 
This relative displacement appears steady in the turntable frame once the blobs have 
clearly formed. This displacement is consistent with the structure of the (l , l , l)  mode, 
just as is the initial tilt of the dyeline. This affirms that the ( l , l , l )  mode continues 
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FIGURE 7. Dyeline pattern for w = 2.46, 0 = 1". The time is (a) 2.5 & 0.3 non-dimensionally or 
1.55 s on the videotape record; ( h )  5.1 f 0.3 non-dimensionally or 3.07 s on the videotape record; 
(c) 7.2 f 0.3 non-dimensionally or 4.29 s on the videotape record. Image enhancement as figure 2. 



Nonlinear behaviour of contained inertia waves 167 

0.8 

-0.2 I I I I 1 I I I I I I 

1 2  3 4 5 6 6 7 8 9 10 

FIGURE 8. Relative interaction strengths of ten (2,12,0) modes with the (1,lJ) mode. The solid line 
is czllt + cZltl (secondary driven by primary) and the dashed line is c112 + cIl2t (primary driven by 
secondary), where subscript 1 is for the primary, (l,l ,l) mode and subscript 2 is for a secondary, 
(2 ,1~ ,0 )  mode. The dotted line is the closeness-to-resonant-triad quotient, A .  Each line is normalized 
to its maximum value: (czllt + c2,tl), 1.451; ( ~ 1 1 2  + clIz+), 3.437; A ,  2.324 

12 

to be present at this stage, apparently superimposed on the blobs and kinks that 
the dyelines also reveal. Indeed, it was noted in M92 that the visualizations at this 
stage using a reflective-flake technique show only evidence of the (l , l , l)  mode. It was 
inferred by M94 that this was due to the relative weakness of the flow corresponding 
to the kink, and to its time dependence. 

This behaviour confirms that the flow can be described by linear inviscid theory for 
only about 5 revolutions after the commencement of forcing. The hypothesis that the 
nonlinear interaction of the (2,1,0) mode with the (l,l,l) mode is occurring cannot 
be supported. The hypothesis was that a simple nonlinear interaction would explain 
the dyeline kink. The kink was a structure of smaller scale than the (l,l,l) mode but 
apparently consistent with a flow caused by the presence of a low-order mode like 
(2,1,0). The test shows that the departure from the linear inviscid description funda- 
mentally involves small-scale motion of about a fifth of the tank radius. Moreover, the 
small-scale motion is not consistently small across the tank radius. This is consistent 
with the indications from $4 that complex nonlinear interactions are likely to prevail. 

It is not likely that an interaction with a single, but higher-order, (2,12,0) mode 
is responsible for the small-scale behaviour. A higher-order (2,/2,0) mode could not 
alone cause the large-scale kink in the tank centre, as well as the small-scale behaviour 
at half the tank radius. There is no particular reason for an interaction with a single 
high-order mode to be favoured over an interaction with a single low-order mode. To 
illustrate this, the interaction strengths of some (2,  /2,0) modes (the cnap defined in the 
Appendix) were calculated. These integrals were calculated numerically by a third- 
order NAG finite-difference routine. The closeness to resonance was also calculated. 
The result for interactions of ten (2,4,0) modes with the (l,l,l) mode is given in 
figure 8. The solid line is ~~~~t + cZltl ,  where subscript 1 is for the (1,lJ) mode and 
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subscript 2 is for a (2,12,0) mode. This indicates the extent to which a (2,12,0) mode 
is 'driven' by the (1,1,1) mode. The dashed line is c112 + cIl2t, indicating the extent 
to which the ( l , l , l )  mode is in turn 'driven' by a (2,12,0) mode. The dotted line is 
the closeness-to-resonant-triad quotient, A .  Each line is normalized to its maximum 
value. 

From figure 8, higher-order (2,12,0) modes interact with the (1,lJ) mode more 
weakly than the (2,1,0) mode. The interaction is closest to resonance at (2,5,0). How- 
ever, this corresponds to l /d = 0.4305, which is not particularly close to resonance. 
The closest triad computed in 94 - the tallest spike in figure 5 ( f )  - corresponds to 
l / d  = 0.00061. 

6. Discussion and conclusions 
Contained inertia-wave systems are ones in which even the linear theory has 

peculiarities. Because of the ill-posed nature of the problem, organized stable solutions 
are not guaranteed for any geometry, and it appears that the appearance of wave 
modes is an unstable phenomenon. 

Further confirmation has been found that the contained inertia-wave system is one 
in which linear inviscid theory, while accurately predicting the resonant frequencies of 
modes in certain special geometries (e.g. McEwan 1970; M92), rapidly breaks down. 
It is clear that the dyeline distortions (the kinks and outflows) described here and 
in M94 are not consistent with the forced response expected from linear inviscid 
theory. Nor are they consistent with the transient response (M94). Furthermore, the 
higher-order forced modes which contribute to the linear response must all have 
the same time dependence as the mode closest to resonance. Therefore they cannot 
account for distortions that rotate with the container. 

The formation of small-scale structures has been detailed, notably the dyeline kinks 
and outflows. These consistently occur at the nodal planes of the ( l , l , l )  and (3,1,1) 
modes. The number of small-scale structures is therefore consistent with the axial 
wavenumber of these modes. The behaviour near the resonance of the (5,2,1) mode is 
more complex. However, instabilities again appear at nodal planes. The significance 
of the nodal planes is not yet clear. It should be noted that the distortions, initially 
at least, represent flows of a magnitude significantly lower than the primary forced 
response. In general, more catastrophic breakdowns of the flow (M92) will occur later 
in time than the present experiments could examine. 

One possibility is that the dyeline distortions are of viscous origin. The coplanar 
outflows noted in 93.1 are more suggestive of dye spreading along weak internal 
shear layers (Wood 1966; Kerswell 1995) than of, say, weakly nonlinear interactions 
with other modes. In particular, the development of the bow-tie pattern shows an 
angularity more consistent with intersecting characteristics than with the recirculation 
zones of secondary modes. 

Indications that the dyeline distortions are due to shear layers along characteristic 
surfaces would be : a coincidence in the angles of the distortions and the characteristic 
angle; a consistency in the velocity scales with those predicted theoretically for the 
shear layers; and a continuation of the oscillatory time dependence of the primary 
forced response. The distortions begin at the nodal planes; there is no particular 
reason why the characteristics should intersect at the nodal planes, but it may be 
that their angle simply defines the direction of propagation of an instability. For 
the (l,l,l)-mode experiments in M94, the characteristic angle is about 24" while the 
observed dyeline distortion is at about 70-80" ; here there is no coincidence. For the 
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(3,1,1) mode experiments, the characteristic angle at o = 1.22 is 55"; the observations 
indicate a reasonable coincidence with this angle. For the (5,2,1) mode there is again 
no coincidence between the characteristic angle and the angle of the outflow to the 
vertical. Considering the scale of the flows, various magnitudes have been calculated 
for the shear layers. However, they may be assumed to have values between the 
Ekman layer at and the Stewartson layer at Ell4  (Greenspan 1968). If the latter 
case were taken, the shear-layer scale for the (1,lJ)- and (3,1,1)-mode experiments 
could reach the same order of magnitude as the observed distortion flows. However, 
the shear layers are supposed to accompany the oscillatory forced response and indeed 
are driven by them, whereas the observations show the flow losing its oscillatory time 
dependence and linear mode structure. 

The weakly nonlinear interactions in a cylindrical container are inherently ubiq- 
uitous. A test experiment illustrates that the most na'ive interpretation of weakly 
nonlinear theory fails to explain the departure from linear inviscid theory. The com- 
plexity of potential weakly nonlinear interactions is a direct result of the transcen- 
dental nature of the dispersion relation for the cylindrical modes. Similar complexity 
might be expected in spheroidal containers. It would be particularly interesting to 
experimentally investigate inertial oscillations in a rectilinear container, to see if the 
breakdown phenomena are equally prevalent. If they are, then more fundamental 
phenomena such as elliptical-flow instabilities are liable to be the root cause or causes 
of the breakdowns; this will be discussed shortly. 

It was noted in $1 that experimental evidence associating a mean circulation 
with breakdowns of inertia-wave modes does exist. However, the precise nature of 
the association between a mean circulation and the various breakdown phenomena 
has not yet been elucidated. Mean circulations are not evident in the experiments 
reported here or in M94. The small mean circulation expected (Thompson 1970) on 
the basis of asymptotic theory is too small to be observed in the present experiments. 
Nor could it significantly influence the tuning of the system near resonance, via the 
mechanism derived by Gunn & Aldridge (1990). Nevertheless, a mean circulation 
may be important in later stages of the breakdown, particularly the more dramatic 
'violent-collapses' (M92), if the mean circulation is in fact a flow with elliptical 
streamlines. 

An elliptical flow effectively forms one member of a nonlinear triad with a cylin- 
drical inertia-wave mode (Waleffe 1990). Studies of elliptical-flow instabilities such as 
that of Waleffe (1990) begin with a basic flow that has elliptical streamlines, which 
through the nonlinear mechanism creates an unstably-growing cylindrical inertia-wave 
mode. The present experiments, and similar studies already detailed in $1, begin with 
a basic flow that is a cylindrical inertia wave mode. Perhaps the same mechanism is 
at work, in this case generating an elliptical flow as part of the breakdown process. 

Whether or not the dyeline distortions reported here and in M94 are part of the 
same process in unclear. However, it is likely that they, along with a great number 
of approximate-resonant-triad interactions, are separate phenomena exhibited by the 
extraordinarily rich contained inertia-wave system. 

The bulk of this work was done while I was a PhD student in the Department 
of Applied Mathematics and Theoretical Physics, University of Cambridge. I should 
like to thank my supervisor, Dr Paul Linden, as well as my colleagues, in particular 
Dr David Tan, Prof Michael McIntyre and Dr John Jackson, for many helpful 
discussions. This work was done as part of a project funded by the British National 
Space Centre / Royal Aerospace Establishment and managed by British Aerospace 
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PLC. Advice from anonymous reviewers was appreciated. Some of the final numerical 
calculations were done at the School of Mathematics of the University of New South 
Wales. 

Appendix. Derivation of the interaction equations 
Firstly, refer to the original, fully nonlinear momentum equation (2.1). Now the 

dynamic terms are no longer assumed to be small, and therefore no expansion of 
u and p in powers of the small parameter 8 is made. Note, however, that terms 
containing 8 will still appear. These are present because the kinematic forcing term, 
which arises from the variation of the axis of spin owing to the forced precession, 
was originally simplified under the assumption that 8 is small, i.e. the time-variant 
vector K was expanded to U(8).  This has the effect of simplifying the forcing term in 
the equation but does not affect the nonlinear terms. The inviscid approximation is 
maintained. The momentum equation is now given by 

au 
- + (u V)u + wk x u + B ( a  - 2)(r cos(q5 + t))R 
a t  

The inhomogeneous 
'cross-Coriolis' term 
cannot be expressed 

The real velocity a 

= -vp. (A 1) 
w sin t 
w cos t 

-0 cos t - u sin t 

term, O(o - 2)(r cos(q5 + t ) $ ,  comes from the time-dependent 
and the time-dependent O(8) part of the centrifugal term that 
as Vp, both of which are due to the forced precession. 
nd pressure are expressed as a sum of the complex spatial eigen- 

- qw - 2) 

mode functions U ,  and Q,, multiplied by arbitrary complex time-varying amplitudes 
An, 

m 

n=l 

and 
m 

n= 1 

where the Q, are given by (2.6) and the U ,  = (U,, V,,, W,,) are given (M94) by 

U,,= i- cos [ k n ( z / h  + i)] eim4, (A4) 1 - wn2 

-' [a,, dJm(2Rnr)  + rniJ,,,(2l,r) cos [ k n ( z / h  + i)] eim4, V" = ___ (A 5 )  1 1 -an2 dr r 
k n  
h 

W, = - i--Jm(2A,r) sin [ k n ( z / h  + i)] eim4. 

To each index it there corresponds one combination of the wavenumber indices k ,  l 
and rn for a mode. 

The notation w < 0 will be used to denote modes which represent waves travelling 
with a phase velocity in the opposite sense to w > 0 modes. As noted in M94, because 
of the nature of the dispersion relation, waves with the same k,l and rn but opposite 
direction of phase propagation have a different spatial structure. They are distinctly 
different modes, and, reflecting this, the argument of the Bessel functions R is different. 
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In the experiments of M92 and M94, only modes with positive o could be directly 
forced by the apparatus; however, in considering the nonlinear interactions, all modes 
will have to be reckoned with. The conjugation operation will be denoted by the t 
superscript. 

Because the wavenumbers in the radial direction need not sum to permit nonlinear 
interaction, the interaction equations cannot be written down by simply equating 
those terms that satisfy a resonant triad condition. Accordingly, the orthogonality 
properties of inertia-wave modes must be used. Any such modes can be shown to be 
orthogonal (Greenspan 1968). Inserting (A 2) and (A 3) into (A l), multiplying by the 
conjugate of the nth spatial eigenfunction and integrating over the container volume 
gives 

where the cn,p, cnapt and the f, are real and the d,, are complex. Here 

d,, = -2& ( W,cost * U! dV, (A 10) 
W, sin t 

-V, cos t - U, sin t 

and 

i41~(2 -0) ' I 2  1 r2J1(2A,r) dr, m = 1 and k odd, (un) f n  = 

= 0, m f 1 or k even, (A 11)  

where the inner-product integral is defined as 

(X) = 1 X .  U! dV,  (A 12) 
.y 

for any complex vector function X ,  with d Y  = rdrd4dz. Steps in the derivation 
from the momentum equation of the linear version of (A7) are given in M94. 

Because the inhomogeneous (or forcing) term is even in z ,  its inner-product integral, 
and hence f,, is zero unless k,  is odd, which is when the k-component of velocity is 
an even function in z. Similarly, f, is zero unless the forcing term is projecting onto 
a mode that matches its unity azimuthal wavenumber, m = 1. 

Considering the nonlinear terms, their inner-product integrals in the axial and 
azimuthal directions collapse on to sums of delta functions expressing the conditions 

{k,, k,, kp : fk, = +k, & kp} U {mn, m,, mp : +m, = +m, + mb}. (A 13) 

However, the radial integrals do not show this behaviour. They would not be expected 
to unless the arguments A, of the Bessel functions were large, justifying an asymptotic 
representation of the Bessel functions as approximately sinusoidal. Combinations 
of axial and azimuthal wavenumbers satisfying the condition (A 13) will be called 
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interacting combinations. Sets of modes with interacting combinations of wavenumbers 
will be called interacting sets. An expressed mode has non-zero fn and hence can be 
precessionally forced. The primary mode is the expressed mode in a forced system 
with resonant frequency O, closest to the excitation frequency w. 

If, in addition to the condition (A13) on the axial and azimuthal wavenumbers, 
the temporal frequencies of three modes are such that the condition 

is satisfied, the interacting set is called a resonant triad. In this case energy can easily 
be transferred from a primary mode to two secondary modes or 'parasites', which 
could be non-expressed (fn = 0) ;  they are brought into existence solely by nonlinear 
interaction. However, in this system, (A 14) cannot be exactly satisfied and thus there 
are no exact resonant triads. This, along with the lack of a condition on the radial 
wavenumber, is a feature of the dispersion relation. For the cylindrical modes, the 
dispersion relation is governed by a transcendental equation (from (2.7) and (2.8)), 
with roots that are densely, rather than discretely spaced. 

Note that as the d,, are functions of time, the interaction equations would be 
non-autonomous if 13 were not small. 

The radial integrals of the nonlinear term, 1 (( U ,  - V)Up) - Uir dr, are particu- 

larly hard to evaluate; recurrence relations for the Bessel functions that would enable 
an elegant evaluation of all these integrals cannot be found. Most of them, of course, 
may be ignored since they correspond to non-interacting combinations of the axial 
and azimuthal wavenumbers. 
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